domingo, 7 de junio de 2009
5.3. Las zonas de falla transformante.
sábado, 6 de junio de 2009
La colisión continental:
Las ofiolitas:
Representan fragmentos de corteza oceánica que han sido obducidos (lo contrario de subducidos) en un proceso de colisión continental. Los cuatro niveles de la secuencia estudiada en la corteza oceánica son perfectamente reconocibles. A su base pueden aparecer Peridotitas del Manto.
¿Hasta dónde subduce la Litosfera?
5.2. La convergencia de placas: La subducción y la colisión continental.
La subducción: La placa que subduce se curva originándose una zona de fosa donde se alcanzan las mayores profundidades oceánicas. La fricción entre las dos placas da lugar a zonas muy activas desde el punto de vista sísmico. La Litosfera de la placa que subduce se introduce en zonas del Manto a mayores temperaturas, produciendo su progresiva desaparición por fusión y provocando la aparición de un cinturón volcánico paralelo a este tipo de límites. Los sedimentos del primer nivel de la corteza oceánica pueden no subducir y ser incorporados al margen de la otra placa (prisma de acrección). Se pueden dar dos modalidades de subducción, según la naturaleza de las placas puestas en contacto:
El origen de las dorsales: Ruptura continental.
actualmente tienen lugar:
* Etapa de Rift: (Llamada de este modo por el valle en el que actualmente está teniendo lugar). Se produce un estiramiento de la litosfera continental que origina la aparición de grandes fallas normales. El adelgazamiento de la litosfera y del Manto a una mayor temperatura permite la aparición de vulcanismo aprovechando estas fallas.
* Etapa de Mar Rojo: Se inicia la producción de litosfera oceánica gracias a la aparición de una dorsal. Se produce la entrada de agua de mar. Los antiguos bordes del valle del Rift quedan como márgenes pasivos.
Más sobre las dorsales
Estas reconstrucciones se denominan reconstrucciones paleogeógráficas. El inicio de nuestra historia sería un continente único denominado Pangea por Wegener, muchos años antes de que se empezase a hablar de la Tectónica de placas. De aquí se pasa a cuestionar el proceso de división de una placa continental para originar dos diferentes.
5.1. Los movimientos divergentes
5. EL MOVIMIENTO DE LAS PLACAS LITOSFÉRICAS.
Límites divergentes: Cuando el movimiento de las placas es de separación, deja un "hueco" aprovechado por rocas magmáticas para generar nueva corteza oceánica. También se les llama Zonas de Dorsal o límites constructivos.
Límites transcurrentes. Existen zonas donde el movimiento de las placas es paralelo y de sentido contrario, conocidas también por zonas de falla transformante.
Así, estos límites dividirían en placas una litosfera en continuo movimiento, con unas placas creciendo a partir de su límite de dorsal y otras menguando a partir de su zona de subducción.
viernes, 5 de junio de 2009
4. CONDUCCIÓN Y CONVECCIÓN DEL CALOR INTERNO.
Si la cantidad de calor que le llega al Manto es mayor que la que puede ceder por convección se puede producir la fusión parcial del Manto, iniciándose el ascenso más rápido del material fundido. A este material caliente y fundido en ascenso se le denomina penacho o pluma del Manto.
3. LA MÁQUINA TÉRMICA DEL INTERIOR TERRESTRE.
Todos los procesos internos de la Tierra se basan en las transferencias de calor que mantienen en continuo movimiento las rocas del interior de la Tierra. Este calor queda en evidencia en procesos como el magmatismo y el metamorfismo.
El Núcleo guarda calor desde el momento de formación de la Tierra. Su composición hace que sea muy conductivo y, además, esté en convección. Este calor lo va liberando de forma progresiva al Manto.
La desintegración de elementos radiactivos en el Manto (U235,U238,Th232 y K40), produce calor que se libera de forma gradual.
Este calor interno trasmitido por el Manto y la Corteza es el responsable de la actividad tectónica, y de los procesos geológicos internos, constituyendo así el autentico motor de la Tectónica de placas.
2.3. Núcleo:
Núcleo externo:Fundido, puesto que las ondas S no lo atraviesan. La temperatura alcanza los 5.000 grados. La menor densidad con respecto al interno hace pensar que, además de hierro y níquel, puede haber otros elementos, fundamentalmente, azufre y, en menor cantidad, silicio y oxígeno. Presenta fuertes corrientes de convección. Núcleo interno:Sólido, evidenciado por una mayor velocidad de las ondas P. Por su mayor densidad se piensa que su contenido en azufre es mucho menor que el del Núcleo externo. Esta circunstancia, junto con las mayores presiones existentes en el interior, posibilita su estado sólido pese a existir mayores temperaturas (superiores a 6000 º C).
jueves, 4 de junio de 2009
Manto inferior
2.2. Manto:
Corteza Continental: de 0-70 kilómetros.
2.1. Corteza
Nivel 1: Capa de sedimentos. Desde un espesor muy variable, 1.300 metros de media, pero inexistente en las zonas de dorsal, hasta espesores de 10 km en las zonas que bordean a los continentes. Nivel 2: Lavas almohadilladas. Basaltos submarinos emitidos en las zonas de dorsal que, al sufrir un rápido enfriamiento, ofrecen superficies lisas y semiesféricas. Nivel 3: Diques Basálticos. Son de composición similar a las lavas almohadilladas y están solidificados en forma de diques verticales. Cada dique tiene un antiguo conducto por donde se emitía la lava que formó el nivel anterior. Nivel 4: Gabros. Representa material solidificado en la cámara magmática existente bajo la zona de dorsal. Este material solidificado alimentó los dos niveles anteriores.
2. LA ESTRUCTURA Y LA NATURALEZA FÍSICOQUÍMICA DE LA TIERRA
Desde el punto de vista de la tectónica de placas se utiliza también el término Litosfera (A+B) para referirse a la corteza más la parte del Manto superior, de profundidad variable y que se traslada solidariamente con ella.
¿Y la Astenosfera?Los últimos estudios demuestran que la astenosfera no existe, puesto que la zona de baja velocidad no es universal y, al parecer, las pequeñas zonas donde se encuentra un Manto más plástico, serían debidas a restos de antiguas plumas.
lunes, 1 de junio de 2009
1.2. Ondas sísmicas.
Los terremotos son vibraciones que atraviesan las rocas cuando éstas se fracturan y se propagan en forma de ondas. Según se propaguen, por el interior de la roca o en la superficie, se denominan:
-Ondas de volumen. Las distintas rocas son atravesadas de diferente manera según su naturaleza y estado. Las vibraciones se transmiten formando frentes esféricos de ondas que dan lugar a ondas de volumen. Estas pueden ser de dos tipos:
* Ondas P (primarias). Son las más rápidas y las que llegan antes. La vibración se produce en el sentido de avance de la onda.
La velocidad de estas ondas es mayor cuanto menor es la densidad de la roca (inversamente proporcional) y, mayor cuanto más rígida (directamente proporcional). Además, las ondas P se pueden transmitir en fluidos (rigidez=0) pues su velocidad depende también de la incompresibilidad.
* Ondas S (secundarias). Son más lentas, puesto que la vibración se produce en el sentido perpendicular a la propagación de la onda.
Al igual que en las anteriores la velocidad de estas ondas es mayor cuanto menor es la densidad de la roca (inversamente proporcional) y mayor cuanto más rígida (directamente proporcional), pero en ningún caso pueden atravesar fluidos.
-Ondas de superficie: Cuando las ondas P y S llegan a la superficie se originan ondas superficiales (R y L) muy similares a las que se forman en la superficie del agua de un recipiente al que le golpeamos un lateral. Los daños causados por los terremotos y los maremotos son consecuencia de estas ondas de baja frecuencia y gran longitud de onda. Desde el punto de vista de la estructura del interior de la Tierra no aportan información.
En este video se ve muy bien lo antes explicado, es decir, ayuda a entenderlo.